हिंदी

Which of the Following Triplet Pythagorean? (10, 24, 26) - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following triplet  pythagorean?  

(10, 24, 26)

उत्तर

The two smallest numbers are 10 and 24. The sum of their squares is:
102 + 242 = 676 = 262
Hence, (10, 24, 26) is a Pythagorean triplet.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Squares and Square Roots - Exercise 3.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 3 Squares and Square Roots
Exercise 3.2 | Q 7.4 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the square of the given number.

86


Observe the following pattern
22 − 12 = 2 + 1
32 − 22 = 3 + 2
42 − 32 = 4 + 3
52 − 42 = 5 + 4
and find the value of 

 1112 − 1092


Observe the following pattern \[1 = \frac{1}{2}\left\{ 1 \times \left( 1 + 1 \right) \right\}\]
\[ 1 + 2 = \frac{1}{2}\left\{ 2 \times \left( 2 + 1 \right) \right\}\]
\[ 1 + 2 + 3 = \frac{1}{2}\left\{ 3 \times \left( 3 + 1 \right) \right\}\]
\[1 + 2 + 3 + 4 = \frac{1}{2}\left\{ 4 \times \left( 4 + 1 \right) \right\}\]and find the values of following:

31 + 32 + ... + 50


Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :  

52 + 62 + 72 + 82 + 92 + 102 + 112 + 122

 

 


Write a Pythagorean triplet whose smallest member is 8.

If one member of a pythagorean triplet is 2m, then the other two members are ______.


The sum of first n odd natural numbers is ______.


For every natural number m, (2m – 1, 2m2 – 2m, 2m2 – 2m + 1) is a pythagorean triplet.


A 5.5 m long ladder is leaned against a wall. The ladder reaches the wall to a height of 4.4 m. Find the distance between the wall and the foot of the ladder.


Put three different numbers in the circles so that when you add the numbers at the end of each line you always get a perfect square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×