Advertisements
Advertisements
प्रश्न
Write in polar form of the following complex numbers
`("i" - 1)/(cos pi/3 + "i" sin pi/3)`
उत्तर
`("i" - 1)/(1/2 + "i" sqrt(3)/2)`
= `(2("i" - 1))/(1 + "i"sqrt(3)) xx (1 - "i"sqrt(3))/(1 - "i"sqrt(3)`
= `((sqrt(3) - 1)/2) + "i" ((sqrt(3) + 1)/2)`
Let z = `((sqrt(3) - 1)/2) + "i" ((sqrt(3) + 1)/2)`
= r(cos θ + i sin θ)
Equating real and imaginary parts
r cos θ = `(sqrt(3) - 1)/2 (+ "ve")`
r sin θ = `(sqrt(3) + 1)/2 (+ "ve")`
r2 cos2θ + r2 sin2θ = `((sqrt(3) - 1)/2)^2 + ((sqrt(3) + 1)/2)^2`
r2 = `8/4` = 2
Modulus |z| = r = `sqrt(2)`
Argument (or) Amplitude θ = `tan^-1 (y/x)`
= `tan^-1 ((sqrt(3) + 1)/(sqrt(3) - 1))`
= `tan^-1 ((1 + 1/sqrt(3))/(1 - 1/sqrt(3)))`
= `(5pi)/12`
∵ `(1 + 1/sqrt(3))/(1 - 1/sqrt(3)) = (1 + 1/sqrt(3))/(1 - 1 1/sqrt(3))`
= `(tan pi/4 + tan pi/6)/(1 - tan pi/4 tan pi/6)`
= `tan (pi/4 + pi/6)`
= `tan (5pi)/12`
= `tan^-1 (tan (5pi)/12)`
= `(5pi)/12`
Argument z = `2"k"pi + (5pi)/12`
∴ Polar form z = r(cos θ + i sin θ)
`((sqrt(3) - 1)/2) + "i" ((sqrt(3) + 1)/2) = sqrt(2) (cos(2"k"pi + (5pi)/12) + "i" sin(2"k"pi + (5pi)/12)), "k" ∈ "z"`
APPEARS IN
संबंधित प्रश्न
Write in polar form of the following complex numbers
`3 - "i"sqrt(3)`
Write in polar form of the following complex numbers
– 2 – i2
Find the rectangular form of the complex numbers
`(cos pi/6 "i" sin pi/6)(cos pi/12 + "i" sin pi/12)`
Find the rectangular form of the complex numbers
`(cos pi/6 - "i" sin pi/6)/(2(cos pi/3 + "i" sin pi/3))`
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) ... (x_"n"^2 + y_"n"^2)` = a2 + b2
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `sum_("r" = 1)^"n" tan^-1 (y_"r"/x_"r") = tan^-1 ("b"/"a") + 2"k"pi, "k" ∈ "z"`
If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)
If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0
Choose the correct alternative:
The solution of the equation |z| – z = 1 + 2i is
Choose the correct alternative:
If z is a complex number such that z ∈ C\R and `"z" + 1/"z"` ∈ R, then |z| is
Choose the correct alternative:
If `(z - 1)/(z + 1)` purely imaginary then |z| is
Choose the correct alternative:
The principal argument of `3/(-1 + "i")` is
Choose the correct alternative:
The principal argument of (sin 40° + i cos 40°)5 is