हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Write in polar form of the following complex numbers iii-1cos π3+isin π3 - Mathematics

Advertisements
Advertisements

प्रश्न

Write in polar form of the following complex numbers

`("i" - 1)/(cos  pi/3 + "i" sin  pi/3)`

योग

उत्तर

`("i" - 1)/(1/2 + "i"  sqrt(3)/2)`

= `(2("i" - 1))/(1 + "i"sqrt(3)) xx (1 - "i"sqrt(3))/(1 - "i"sqrt(3)`

= `((sqrt(3) - 1)/2) + "i" ((sqrt(3) + 1)/2)`

Let z = `((sqrt(3) - 1)/2) + "i" ((sqrt(3) + 1)/2)`

= r(cos θ + i sin θ)

Equating real and imaginary parts

r cos θ = `(sqrt(3) - 1)/2 (+  "ve")`

r sin θ = `(sqrt(3) + 1)/2 (+  "ve")`

r2 cos2θ + r2 sin2θ = `((sqrt(3) - 1)/2)^2 + ((sqrt(3) + 1)/2)^2`

r2 = `8/4` = 2

Modulus |z| = r = `sqrt(2)`

Argument (or) Amplitude θ = `tan^-1 (y/x)`

= `tan^-1 ((sqrt(3) + 1)/(sqrt(3) - 1))`

= `tan^-1 ((1 + 1/sqrt(3))/(1 - 1/sqrt(3)))`

= `(5pi)/12`

∵ `(1 + 1/sqrt(3))/(1 - 1/sqrt(3)) = (1 + 1/sqrt(3))/(1 - 1 1/sqrt(3))`

= `(tan  pi/4 + tan  pi/6)/(1 - tan  pi/4  tan  pi/6)`

= `tan (pi/4 + pi/6)`

= `tan  (5pi)/12`

= `tan^-1 (tan  (5pi)/12)`

= `(5pi)/12`

Argument z = `2"k"pi + (5pi)/12`

∴ Polar form z = r(cos θ + i sin θ)

`((sqrt(3) - 1)/2) + "i" ((sqrt(3) + 1)/2) = sqrt(2) (cos(2"k"pi + (5pi)/12) + "i" sin(2"k"pi + (5pi)/12)), "k" ∈ "z"`

shaalaa.com
Polar and Euler Form of a Complex Number
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Complex Numbers - Exercise 2.7 [पृष्ठ ८३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 2 Complex Numbers
Exercise 2.7 | Q 1. (iv) | पृष्ठ ८३

संबंधित प्रश्न

Write in polar form of the following complex numbers

`3 - "i"sqrt(3)`


Write in polar form of the following complex numbers

– 2 – i2


Find the rectangular form of the complex numbers

`(cos  pi/6  "i" sin  pi/6)(cos  pi/12 + "i" sin  pi/12)`


Find the rectangular form of the complex numbers

`(cos  pi/6 - "i" sin  pi/6)/(2(cos  pi/3 + "i" sin  pi/3))`


If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) ... (x_"n"^2 + y_"n"^2)` = a2 + b2 


If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `sum_("r" = 1)^"n" tan^-1 (y_"r"/x_"r") = tan^-1 ("b"/"a") + 2"k"pi, "k" ∈ "z"`


If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ


If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)


If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)


If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0 


Choose the correct alternative:

The solution of the equation |z| – z = 1 + 2i is


Choose the correct alternative:

If z is a complex number such that z ∈ C\R and `"z" + 1/"z"` ∈ R, then |z| is


Choose the correct alternative:

If `(z - 1)/(z + 1)` purely imaginary then |z| is


Choose the correct alternative:

The principal argument of `3/(-1 + "i")` is


Choose the correct alternative:

The principal argument of (sin 40° + i cos 40°)5 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×