हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If z = x + iy and arg i(z-iz+2)=π4, show that x2 + y3 + 3x – 3y + 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0 

योग

उत्तर

Given z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`

Now simplifying `(z - "i")/(z + 2) = (x + iy - "i")/(x + "i"y + 2)`

= `(x + "i"(y - 1))/((x + 2) + "i"y) xx ((x + 2) - "i"y)/((x + 2) - "i"y)`

= `(x(x + 2) + y(y  1))/((x + 2)^2 + y^2) + ("i"[(x + 2)(y - 1) - xy])/((x + 2)^2 + y^2)`

= `(x^2 + y^2 + 2x - y)/((x + 2)^2 + y^2) + "i" ((2y - x - 2))/((x + 2)^2 + y^2)`

Given arg `((z - "i")/(z + 2)) = pi/4`

i.e., `tan^-1 ((2y - x - 2)/(x^2 + y^2 + 2x - y)) = pi/4`

`(2y - x - 2)/(x^2 + y^2 + 2x - y) = tan  pi/4` = 1

2y – x – 2 = x2 + 2x + y2 – y

x2 + y2 + 2x + x – y – 2y + 2 = 0

⇒ x² + y² + 3x – 3y + 2 = 0

Hence proved

shaalaa.com
Polar and Euler Form of a Complex Number
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Complex Numbers - Exercise 2.7 [पृष्ठ ८३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 2 Complex Numbers
Exercise 2.7 | Q 6 | पृष्ठ ८३

संबंधित प्रश्न

Write in polar form of the following complex numbers

`2 + "i" 2sqrt(3)`


Write in polar form of the following complex numbers

`3 - "i"sqrt(3)`


Write in polar form of the following complex numbers

– 2 – i2


Write in polar form of the following complex numbers

`("i" - 1)/(cos  pi/3 + "i" sin  pi/3)`


Find the rectangular form of the complex numbers

`(cos  pi/6  "i" sin  pi/6)(cos  pi/12 + "i" sin  pi/12)`


Find the rectangular form of the complex numbers

`(cos  pi/6 - "i" sin  pi/6)/(2(cos  pi/3 + "i" sin  pi/3))`


If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) ... (x_"n"^2 + y_"n"^2)` = a2 + b2 


If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `sum_("r" = 1)^"n" tan^-1 (y_"r"/x_"r") = tan^-1 ("b"/"a") + 2"k"pi, "k" ∈ "z"`


If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ


If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)


If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)


Choose the correct alternative:

If z is a complex number such that z ∈ C\R and `"z" + 1/"z"` ∈ R, then |z| is


Choose the correct alternative:

If `(z - 1)/(z + 1)` purely imaginary then |z| is


Choose the correct alternative:

The principal argument of `3/(-1 + "i")` is


Choose the correct alternative:

The principal argument of (sin 40° + i cos 40°)5 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×