मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

If z = x + iy and arg i(z-iz+2)=π4, show that x2 + y3 + 3x – 3y + 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0 

बेरीज

उत्तर

Given z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`

Now simplifying `(z - "i")/(z + 2) = (x + iy - "i")/(x + "i"y + 2)`

= `(x + "i"(y - 1))/((x + 2) + "i"y) xx ((x + 2) - "i"y)/((x + 2) - "i"y)`

= `(x(x + 2) + y(y  1))/((x + 2)^2 + y^2) + ("i"[(x + 2)(y - 1) - xy])/((x + 2)^2 + y^2)`

= `(x^2 + y^2 + 2x - y)/((x + 2)^2 + y^2) + "i" ((2y - x - 2))/((x + 2)^2 + y^2)`

Given arg `((z - "i")/(z + 2)) = pi/4`

i.e., `tan^-1 ((2y - x - 2)/(x^2 + y^2 + 2x - y)) = pi/4`

`(2y - x - 2)/(x^2 + y^2 + 2x - y) = tan  pi/4` = 1

2y – x – 2 = x2 + 2x + y2 – y

x2 + y2 + 2x + x – y – 2y + 2 = 0

⇒ x² + y² + 3x – 3y + 2 = 0

Hence proved

shaalaa.com
Polar and Euler Form of a Complex Number
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Complex Numbers - Exercise 2.7 [पृष्ठ ८३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 2 Complex Numbers
Exercise 2.7 | Q 6 | पृष्ठ ८३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×