Advertisements
Advertisements
प्रश्न
Write in polar form of the following complex numbers
`3 - "i"sqrt(3)`
उत्तर
Let z = `3 - "i"sqrt(3)` = r(cos θ + i sin θ)
Equating real and imaginary parts
r cos θ = 3(+ve)
r sin θ = `- sqrt(3)` (– ve)
r2 cos2θ + r2 sin2θ = `(3)^2 + (- sqrt(3))^2`
r2 = 9 + 3 = 12
|z| = r = `2sqrt(3)`
Since cos θ positive and sin θ in – ve so lies in IV quadrant.
cos θ = `sqrt(3)/2`
sin θ = `(-1)/2`
θ = `(- pi)/6`
Argument = `2"k"pi - pi/6`, k ∈ z
∴ Polar from z = r(cos θ + i sin θ)
`3 - "i"sqrt(3) = 2sqrt(3) (cos(2"k"pi - pi/6) + "i" sin(2"k"pi - pi/6)) "k" ∈ "z"`
APPEARS IN
संबंधित प्रश्न
Write in polar form of the following complex numbers
`2 + "i" 2sqrt(3)`
Write in polar form of the following complex numbers
– 2 – i2
Write in polar form of the following complex numbers
`("i" - 1)/(cos pi/3 + "i" sin pi/3)`
Find the rectangular form of the complex numbers
`(cos pi/6 "i" sin pi/6)(cos pi/12 + "i" sin pi/12)`
Find the rectangular form of the complex numbers
`(cos pi/6 - "i" sin pi/6)/(2(cos pi/3 + "i" sin pi/3))`
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) ... (x_"n"^2 + y_"n"^2)` = a2 + b2
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `sum_("r" = 1)^"n" tan^-1 (y_"r"/x_"r") = tan^-1 ("b"/"a") + 2"k"pi, "k" ∈ "z"`
If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)
If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0
Choose the correct alternative:
If z is a complex number such that z ∈ C\R and `"z" + 1/"z"` ∈ R, then |z| is
Choose the correct alternative:
If `(z - 1)/(z + 1)` purely imaginary then |z| is
Choose the correct alternative:
The principal argument of `3/(-1 + "i")` is
Choose the correct alternative:
The principal argument of (sin 40° + i cos 40°)5 is