Advertisements
Advertisements
प्रश्न
Write in polar form of the following complex numbers
`2 + "i" 2sqrt(3)`
उत्तर
Let `2 + "i" 2sqrt(3)` = r(cos θ + i sin θ)
Equating real and imaginary parts
r cos θ = 2(+ve)
r sin θ = `2sqrt(3)` (+ve)
r2 cos2θ + r2 sin2θ = (2)2 + `2sqrt(3)^2`
r2 = 4 + 12 = 16
|z| = r = 4
Since cos θ and sin θ are positive ‘θ’ lies in 1st quadrant.
cos θ = `1/2`
sin θ = `sqrt(3)/2`
∴ θ = sin θ = `pi3`
or
θ = `tan^-1 |y/x|`
= `tan^-1 |(2sqrt(3))/2|`
= `tan^-1 sqrt(3) = pi/3`
∴ Argument = `2"k"pi + pi/3`
∴ Polar form is z = r(cos θ + i sin θ)
`2 + 2"i"sqrt(3) = 4(cos(2"k"pi + pi/3) + "i" sin(2"k"pi + pi/3)) "k" ∈ "z"`
APPEARS IN
संबंधित प्रश्न
Write in polar form of the following complex numbers
`3 - "i"sqrt(3)`
Write in polar form of the following complex numbers
– 2 – i2
Write in polar form of the following complex numbers
`("i" - 1)/(cos pi/3 + "i" sin pi/3)`
Find the rectangular form of the complex numbers
`(cos pi/6 "i" sin pi/6)(cos pi/12 + "i" sin pi/12)`
Find the rectangular form of the complex numbers
`(cos pi/6 - "i" sin pi/6)/(2(cos pi/3 + "i" sin pi/3))`
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) ... (x_"n"^2 + y_"n"^2)` = a2 + b2
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `sum_("r" = 1)^"n" tan^-1 (y_"r"/x_"r") = tan^-1 ("b"/"a") + 2"k"pi, "k" ∈ "z"`
If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)
If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0
Choose the correct alternative:
The solution of the equation |z| – z = 1 + 2i is
Choose the correct alternative:
The principal argument of `3/(-1 + "i")` is
Choose the correct alternative:
The principal argument of (sin 40° + i cos 40°)5 is