Advertisements
Advertisements
प्रश्न
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)
उत्तर
Let a = cos α + i sin α = eiα
b = cos β + i sin β = eiβ
c = cos γ + i sin γ = eiγ
a + b + c = (cos α + cos β + cos γ) + i (sin α + sin β + sin γ)
⇒ a + b + c = 0 + i 0
⇒ a + b + c = 0
If a + b + c = 0 then a3 + b3 + c3 = 3abc
(cos 3α + i sin 3α + cos 3β + i sin 3β + cos 3γ + i sin 3γ) = 3[cos (α + β + γ) + i sin (α + β + γ)]
(cos 3α + cos 3β + cos 3γ) + i (sin 3α + sin 3β + sin 3γ) = 3 cos(α + β + γ) + i 3sin(α + β + γ)
Equating real and Imaginary parts
cos 3α + cos 3β + cos 3γ = 3 cos(α + β + γ)
APPEARS IN
संबंधित प्रश्न
Write in polar form of the following complex numbers
Write in polar form of the following complex numbers
Find the rectangular form of the complex numbers
Find the rectangular form of the complex numbers
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)
If z = x + iy and arg
Choose the correct alternative:
The solution of the equation |z| – z = 1 + 2i is
Choose the correct alternative:
If z is a complex number such that z ∈ C\R and
Choose the correct alternative:
If
Choose the correct alternative:
The principal argument of
Choose the correct alternative:
The principal argument of (sin 40° + i cos 40°)5 is