Advertisements
Advertisements
प्रश्न
If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ
उत्तर
`(1 + z)/(1 - z) = (cos 2theta + "i" sin 2theta)/1` .......`["Use" ("Nr" - "Dr")/("Nr" + "Dr") "componendo and dividendo rule"]`
`(1 + z - 1 + z)/(1 + z + 1 - z) = (cos 2theta + "i"sin2theta - 1)/(cos 2theta + "i"sintheta + 1)`
`(2z)/2 = (1 - 2sin^2theta + 2"i"sintheta costheta - 1)/(2cos^2theta - 1 + "i"sintheta costheta + 1)` .....[(x + iy) = I(y – xi)]
z = `(2sintheta["i"costheta - sintheta])/(2costheta[costheta + "i"sintheta])`
= `("i"sintheta[costheta + "i"sin theta])/(costheta[costheta + "i"sintheta])`
z = i tan θ
APPEARS IN
संबंधित प्रश्न
Write in polar form of the following complex numbers
`2 + "i" 2sqrt(3)`
Write in polar form of the following complex numbers
`3 - "i"sqrt(3)`
Write in polar form of the following complex numbers
`("i" - 1)/(cos pi/3 + "i" sin pi/3)`
Find the rectangular form of the complex numbers
`(cos pi/6 "i" sin pi/6)(cos pi/12 + "i" sin pi/12)`
Find the rectangular form of the complex numbers
`(cos pi/6 - "i" sin pi/6)/(2(cos pi/3 + "i" sin pi/3))`
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) ... (x_"n"^2 + y_"n"^2)` = a2 + b2
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)
If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0
Choose the correct alternative:
The solution of the equation |z| – z = 1 + 2i is
Choose the correct alternative:
If z is a complex number such that z ∈ C\R and `"z" + 1/"z"` ∈ R, then |z| is
Choose the correct alternative:
The principal argument of `3/(-1 + "i")` is
Choose the correct alternative:
The principal argument of (sin 40° + i cos 40°)5 is