Advertisements
Advertisements
प्रश्न
Write the following equation in ax + by + c = 0 form: `x/3 = y/2`
उत्तर
`x/3 = y/2`
∴ 2x = 3y
∴ 2x – 3y + 0 = 0 is the equation in ax + by + c = 0 form.
APPEARS IN
संबंधित प्रश्न
Find the equation of the line passing through the points A(2, 0) and B(3, 4).
Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.
Find the x and y-intercepts of the following line: `x/3 + y/2` = 1
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).
Write the following equation in ax + by + c = 0 form: y = 2x – 4
Write the following equation in ax + by + c = 0 form: `x/2 + y/4` = 1
Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.
Find the X-intercept of the line x + 2y – 1 = 0
Find the equation of the line: having slope 5 and containing point A(– 1, 2).
Find the equation of the line: containing the point (2, 1) and having slope 13.
Find the equation of the line passing through the points A(–3, 0) and B(0, 4).
Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.
Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides