हिंदी

Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.

योग

उत्तर १

Given, A(2, 1) and B(3, 2).
Equation of a line in two point form is

`(y - y_1)/(y_2 - y_1) = (x - x_1)/(x_2 - x_1)`

∴ the equation of the passing through A and B line is

`(y - 1)/(2 - 1) = (x - 2)/(3 - 2)`

∴ `(y - 1)/1 = (x - 2)/1`

∴ y – 1 = x – 2
∴ y = x – 1
Comparing this equation with y = mx + c, we get
m = 1 and c = – 1

shaalaa.com

उत्तर २

Points A(2, 1) and B(3, 2) lie on the line y = mx + c.
∴ They must satisfy the equation.
∴ 2m + c = 1          ...(i)
and 3m + c = 2     ...(ii)
equation (ii) equation (i) gives m = 1
Substituting m = 1 in (i), we get
2(1) + c = 1
∴ c = 1 – 2 = – 1

shaalaa.com
Equations of Lines in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Locus and Straight Line - Exercise 5.3 [पृष्ठ ७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 5 Locus and Straight Line
Exercise 5.3 | Q 5 | पृष्ठ ७३

संबंधित प्रश्न

Find the equation of the line passing through the points A(2, 0) and B(3, 4).


The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC


The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.


The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of the line passing through the mid points of sides AB and BC.


Find the x and y-intercepts of the following line: 2x – 3y + 12 = 0


Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.


Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0


Write the following equation in ax + by + c = 0 form: `x/2 + y/4` = 1


Write the following equation in ax + by + c = 0 form: `x/3 = y/2`


Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.


Find the equation of the line: having slope 5 and containing point A(– 1, 2).


Find the equation of the line: containing the point (2, 1) and having slope 13.


Find the equation of the line passing through the points A(–3, 0) and B(0, 4).


Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.


Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.


The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides


The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×