Advertisements
Advertisements
प्रश्न
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Sn_{(s)} | Sn^{2+} (0.050 M) || H^+ (0.020 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]
उत्तर
The cell reaction is as follows:
\[\ce{Sn_{(s)} + 2H^+ (0.020 M) -> Sn^{2+} (0.050 M) + H2 (1 bar)}\]
Hence n = 2,
According to this, the Nernst equation will be as follows:
`"E"_"cell" = ("E"_("H"^+//1/2"H"_2)^Θ - "E"_("Sn"^(2+)//"Sn")^Θ) - 0.059/2 log_10 (["Sn"^(2+)] xx "pH"_2)/(["H"^+]^2)`
∴ `"E"_"cell" = [0 - (-0.14)] - 0.059/2 log_10 (0.050 xx 1)/(0.020)^2`
= `0.14 - 0.059/2 log_10 125`
= 0.078 V
संबंधित प्रश्न
Calculate the e.m.f. of the following cell at 298 K:
Fe(s) | Fe2+ (0.001 M) | | H+ (0.01 M) | H2(g) (1 bar) | Pt(s)
Given that \[\ce{E^0_{cell}}\] = 0.44 V
[log 2 = 0.3010, log 3 = 0.4771, log 10 = 1]
How much charge is required for the reduction of 1 mol of Zn2+ to Zn?
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Mg_{(s)} | Mg^{2+} (0.001 M) || Cu^{2+} (0.0001 M) | Cu_{(s)}}\]
Write the Nemst equation and explain the terms involved.
Calculate emf of the following cell at 298 K:
Mg(s) | Mg2+(0.1 M) || Cu2+ (0.01) | Cu(s)
[Given Eocell = +2.71 V, 1 F = 96500 C mol–1]
Calculate the value of Ecell at 298 K for the following cell:
`(Al)/(Al^(3+)) (0.01M) || Sn^(2+) ((0.015 M))/(Sn)`
`E° _(Al^(3+))/(AI)= -1.66 " Volt and " E° _(Sn^(2+)) /(Sn) = -0.14` volt
Complete the following statement by selecting the correct alternative from the choices given:
For a spontaneous reaction ΔG° and E° cell will be respectively:
For a general electrochemical reaction of the type:
\[\ce{{a}A + {b}B ⇔ {c}C + {d}D}\]
Nernst equation can be written as:
Calculate the value of ΔG that can be obtained from the following cell at 298K.
`(Al)/(Al3+) (0.01M) || (Sn^(2+) (0.015M))/(Sn)`
`E^\circ (Al^(3+))/(Al) = -1.66 V; E^\circ (Sn^(2+))/(Sn) = -0.14 V`
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Fe_{(s)} | Fe^{2+} (0.001 M) || H^+ (1 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]