Advertisements
Advertisements
प्रश्न
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x≠2,4`
उत्तर
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x≠2,4`
⇒`((x-1)(x-4)+(x-2)(x-3))/((x-2)(x-4))0=10/3`
⇒`(x^2-5x+4+x^2-5x+6)/(x^2-6x+8)=10/3`
⇒`(2x^2-10x+10)/(x^2-6x+8)=10/3`
⇒`(x^2-5x+5)/(x^2-6x+8)=5/3`
⇒`3x^2-15x+15=5x^2-30x+40`
⇒`2x^2-15x+25=0`
⇒`2x^2-10x-5x+25=0`
⇒`2x(x-5)-5 (x-5)=0`
⇒`(x-5)(2x-5)=0`
⇒`x-5=0 or 2x-5=0`
⇒`x=5 or x=5/2`
Hence, 5 and `5/2` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Check whether the following is the quadratic equation:
(x - 2)(x + 1) = (x - 1)(x + 3)
Without solving, comment upon the nature of roots of the following equations
6x2 – 13x +4 =0
Solve the following equation for x and give, in the following case, your answer correct to 2 decimal places:
x2 – 3x – 9 = 0
Solve: x4 – 2x² – 3 = 0.
Solve the following equation using the formula:
`sqrt(6)x^2 - 4x - 2sqrt(6) = 0`
`5x^2+13x+8=0`
`(x+3)/(x-2)-(1-x)/x=17/4`
Solve the quadratic equation 8x2 – 14x + 3 = 0
- When x ∈ I (integers)
- When x ∈ Q (rational numbers)
If x + y = 5 and x - y = 1, then find the value of x.
Check whether the following are quadratic equation:
(2x + 1) (3x – 2) = 6(x + 1) (x – 2)