Advertisements
Advertisements
प्रश्न
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x≠2,4`
उत्तर
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x≠2,4`
⇒`((x-1)(x-4)+(x-2)(x-3))/((x-2)(x-4))0=10/3`
⇒`(x^2-5x+4+x^2-5x+6)/(x^2-6x+8)=10/3`
⇒`(2x^2-10x+10)/(x^2-6x+8)=10/3`
⇒`(x^2-5x+5)/(x^2-6x+8)=5/3`
⇒`3x^2-15x+15=5x^2-30x+40`
⇒`2x^2-15x+25=0`
⇒`2x^2-10x-5x+25=0`
⇒`2x(x-5)-5 (x-5)=0`
⇒`(x-5)(2x-5)=0`
⇒`x-5=0 or 2x-5=0`
⇒`x=5 or x=5/2`
Hence, 5 and `5/2` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Check whether the following is the quadratic equation:
(x + 2)3 = 2x(x2 - 1)
The height of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, form the quadratic equation to find the base of the triangle.
Solve : x(x – 5) = 24
Q - 34
Solve the following equation using the formula:
`(2x + 3)/(x + 3) = (x + 4)/(x + 2)`
`16/x-1=15/(x+1),x≠0,-1`
`3^((x+2))+3^(-x)=10`
If x = −3 and x = `2/3` are solutions of quadratic equation mx2 + 7x + n = 0, find the values of m and n.
If m and n are roots of the equation `1/x - 1/(x - 2) = 3`; where x ≠ 0 and x ≠ 2; find m × n.
Solve the following equation by using formula :
`(2)/(x + 2) - (1)/(x + 1) = (4)/(x + 4) - (3)/(x + 3)`