Advertisements
Advertisements
प्रश्न
`x/(2) + 5 ≤ x/(3) + 6` where x is a positive odd integer.
उत्तर
`x/(2) + 5 ≤ x/(3) + 6`
⇒ `x/(2) - x/(3) ≤ 6 - 5`
⇒ `(3x - 2x)/(6) ≤ 1`
⇒ `x/(6) ≤ 1`
⇒ x ≤ 6
∵ x is a positive odd integer
∴ x = {1, 3, 5}.
APPEARS IN
संबंधित प्रश्न
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines:
Q' ∩ P
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P - Q
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P ∩ Q'
List the solution set of 30 – 4 (2.x – 1) < 30, given that x is a positive integer.
If x is a negative integer, find the solution set of `(2)/(3) + (1)/(3)` (x + 1) > 0.
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
If x ∈ R, the solution set of 6 ≤ – 3 (2x – 4) < 12 is ______.
Solve the inequation : `(5x + 1)/(7) - 4 (x/7 + 2/5) ≤ 1(3)/(5) + (3x - 1)/(7), x ∈ "R"`
If x∈R, solve `2x - 3 ≥ x + (1 - x)/(3) > (2)/(5)x`
x(8 – x) > 0 and x ∈ N gives ______.