Advertisements
Advertisements
प्रश्न
`(2x + 3)/(3) ≥ (3x - 1)/(4)` where x is positive even integer.
उत्तर
`(2x + 3)/(3) ≥ (3x - 1)/(4)`
⇒ `(2x)/(3) + (3)/(3) ≥ (3x)/(4) - (1)/(4)`
⇒ `(2x)/(3) - (3x)/(4) ≥ (-1)/(4) - 1`
⇒ `(8x - 9x)/(12) ≥ - (5)/(4)`
⇒ `(-x)/(12) ≥ (-5)/(4)`
⇒ `x/(12) ≤ (5)/(4)`
⇒ `x ≤ (5)/(4) xx 12`
⇒ x ≤ 15
∵ x is positive even integer
∴ x = {2, 4, 6, 8, 10, 12, 14}.
APPEARS IN
संबंधित प्रश्न
Solve the given inequation and graph the solution on the number line.
2y – 3 < y + 1 ≤ 4y + 7, y ∈ R
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P ∩ Q
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P - Q
If x is a negative integer, find the solution set of `(2)/(3) + (1)/(3)` (x + 1) > 0.
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9} solve x – 3 < 2x – 1.
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9}, find the values of x for which -3 < 2x – 1 < x + 4.
If x ∈ W, then the solution set of the in equation 5 – 4x ≤ 2 – 3x is ______.
Solve the inequation:
6x – 5 < 3x + 4, x ∈ I
Solve the inequation : `(5x + 1)/(7) - 4 (x/7 + 2/5) ≤ 1(3)/(5) + (3x - 1)/(7), x ∈ "R"`
Given, `x + 2 ≤ x/3 + 3` and x is a prime number. The solution set for x is ______.