Advertisements
Advertisements
प्रश्न
ΔXYZ ∼ ΔPYR. ΔXYZ मध्ये, XY = 4.5 सेमी, ∠Y = 60°, YZ = 5.1 सेमी व `"XY"/"PY" = 4/7,` तर ΔXYZ व ΔPYR काढा.
उत्तर
कच्ची आकृती
रचनेच्या पायऱ्या:
- दिलेल्या मापाचा ΔXYZ काढा.
बाजू YZ शी लघुकोन करणारा किरण YD काढा. - कंपासमध्ये सोयीस्कर अंतर घेऊन B1, B2, B3, B4, B5, B6 आणि B7 हे 7 बिंदू असे घ्या, की YB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7
- B4Z जोडा. बिंदू B7 मधून B4Z ला समांतर रेषा काढा. B7 मधून जाणारी ही रेषा किरण YZ ला बिंदू R मध्ये छेदते.
- बिंदू R मधून बाजू XZ ला समांतर रेषा काढा. ही रेषा व किरण YX यांच्या छेदनबिंदूला P नाव द्या.
ΔPYR हा ΔXYZ चा इष्ट समरूप त्रिकोण आहे.
APPEARS IN
संबंधित प्रश्न
ΔPQR ~ ΔLTR, ΔPQR मध्ये PQ = 4.2 सेमी, QR = 5.4 सेमी, PR = 4.8 सेमी आणि `"PQ"/"LT"` = `3/4` तर ΔPQR व ΔLTR काढा.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔPQR ∼ ΔABC, `"PR"/"AC" = 5/7` तर ______
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔABC ∼ ΔAQR `"AB"/"AQ" = 7/5` असल्यास, खालीलपैकी कोणता पर्याय सत्य आहे?
रेख AB = 9.7 सेमी लांबीचा काढा. त्यावर बिंदू P असा घ्या, की AP = 3.5 सेमी, A – P – B. बिंदू P मधून रेख AB ला लंब काढा.
ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠MAT = 120°, AT = 4.9 सेमी, `"AM"/"HA" = 7/5` तर ΔAHE काढा.
ΔRHP ∼ ΔNED, ΔNED मध्ये, NE = 7 सेमी, ∠D = 30°, ∠N = 20° तसेच `"HP"/"ED" = 4/5,` तर ΔRHP काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये, AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी, `"AM"/"AH" = 7/5`, तर ΔAHE काढा.
एक समद्विभुज त्रिकोण असा काढा, की त्याचा पाया 5 सेमी व उंची 4 सेमी आहे. त्या त्रिकोणाला समरूप त्रिकोण असा काढा, की त्याच्या बाजू मूळ त्रिकोणाच्या संगत बाजूंच्या `2/3` पट आहेत.
चौरसाचा कर्ण `sqrt50` सेमी असून असे वर्तुळ काढा, की जे चौरसाच्या सर्व बाजूंना स्पर्श करेल. वर्तुळाची त्रिज्या मोजून लिहा.