Advertisements
Advertisements
प्रश्न
यदि f तथा g, नियम f(x) = x2 + 7 तथा g(x) = 3x + 5 द्वारा परिभाषित वास्तविक फलन हैं, तो निम्नलिखित में से प्रत्येक को ज्ञात कीजिए: `f(1/2)×g(14)`
उत्तर
फलन का मूल्यांकन करें।
यहाँ
फलन का मूल्य `1363/4` है।
APPEARS IN
संबंधित प्रश्न
वह प्रांत ज्ञात करो जिसके लिए फलन f(x) = 2x2 – 1 और g(x) = 1 – 3x समान हैं।
निम्नलिखित फलन में से प्रत्येक का प्रांत ज्ञात कीजिए:
f(x) = `x/(x^2 + 3x + 2)`
फलन f(x) = |x - 1| + |1 + x|, –2 ≤ x ≤ 2 को पुनः परिभाषित (Redefine) कीजिए।
फलन f(x) = `1/sqrt([x]^2 - [x] - 6)` का प्रांत ज्ञात कीजिए।
निम्नलिखित में से कौन f(x) = `1/sqrt(x - |x|)` द्वारा परिभाषित फलन f का प्रांत है।
यदि f(x) = `x^3 - 1/x^3` तो f(x) + f`(1/x)`निम्नलिखित में से किसके बराबर है:
निम्नलिखित फलन को क्रमित युग्मों में वर्णित कीजिए और उसका परिसर ज्ञात कीजिएः
f : X → R, f(x) = x3 + 1, जहाँ X = {−1, 0, 3, 9, 7}
x का वह मान ज्ञात कीजिए जिसके लिए फलन f(x) = 3x2 − 1 और फलन g(x) = 3 + x समान हैं।
क्या g(x) = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? औचित्य भी बताइए। यदि इसे नियम g(x) = αx + β द्वारा वर्णित किया जाये तो α और β को क्या मान दिया जा सकता है?
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = |x − 3|
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = 1 + 3 cos2x
(संकेत: −1 ≤ cos2x ≤ 1 ⇒ −3 ≤ 3 cos2x ≤ 3 ⇒ −2 ≤ 1 + 3 cos2x ≤ 4)
यदि f(x) = `(x−1)/(x+1)`, तो सिद्ध कीजिए कि
`f(1/x) = -f(x)`
यदि f(x) = `(x−1)/(x+1)`, तो सिद्ध कीजिए कि
`f(-1/x) = (-1)/f(x)`
मान लीजिए कि f(x) = `sqrtx` तथा g(x) = x दो फलन प्रांत R+ ∪ {0} में परिभाषित हैं तो निम्नलिखित ज्ञात कीजिए:
(f + g) (x)
मान लीजिए कि f(x) = `sqrtx` तथा g(x) = x दो फलन प्रांत R+ ∪ {0} में परिभाषित हैं तो निम्नलिखित ज्ञात कीजिए:
(fg) (x)
मान लीजिए कि f(x) = `sqrtx` तथा g(x) = x दो फलन प्रांत R+ ∪ {0} में परिभाषित हैं तो निम्नलिखित ज्ञात कीजिए:
`(f/g) (x)`
यदि f(x) = y = `(ax−b)/(cx−a)`, तो सिद्ध कीजिए कि f(y) = x.
वह प्रांत जिसके लिए f(x) = 3x2 − 1 तथा g(x) = 3 + x द्वारा परिभाषित फलन f तथा g समान हैं,