हिंदी

Science (English Medium) कक्षा १२ - CBSE Question Bank Solutions for Mathematics

Advertisements
[object Object]
[object Object]
विषयों
मुख्य विषय
अध्याय
Advertisements
Advertisements
Mathematics
< prev  61 to 80 of 10633  next > 

Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the set of values of `cosec^-1(sqrt3/2)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Advertisements

Find the domain of `f(x)=cotx+cot^-1x`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Test the continuity of the function on f(x) at the origin: 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right|}, & x \neq 0 \\ 1 , & x = 0\end{cases}\] 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

What is the value of the determinant \[\begin{vmatrix}0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{vmatrix} ?\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Write the value of the determinant \[\begin{vmatrix}p & p + 1 \\ p - 1 & p\end{vmatrix}\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Write the value of the determinant \[\begin{vmatrix}x + y & y + z & z + x \\ z & x & y \\ - 3 & - 3 & - 3\end{vmatrix}\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

If the determinant \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0 \text{ is }\] 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

If \[A_r = \begin{vmatrix}1 & r & 2^r \\ 2 & n & n^2 \\ n & \frac{n \left( n + 1 \right)}{2} & 2^{n + 1}\end{vmatrix}\] , then the value of \[\sum^n_{r = 1} A_r\] is

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined
< prev  61 to 80 of 10633  next > 
Advertisements
Advertisements
CBSE Science (English Medium) कक्षा १२ Question Bank Solutions
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Biology
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Chemistry
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Computer Science (C++)
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Computer Science (Python)
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ English Core
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ English Elective - NCERT
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Entrepreneurship
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Geography
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Hindi (Core)
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Hindi (Elective)
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ History
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Informatics Practices
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Mathematics
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Physical Education
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Physics
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Political Science
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Psychology
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Sanskrit (Core)
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Sanskrit (Elective)
Question Bank Solutions for CBSE Science (English Medium) कक्षा १२ Sociology
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×