Advertisements
Advertisements
प्रश्न
10 से 250 तक की प्राकृत संख्याओं मेंं कितनी संख्याएँ 4 से विभाज्य है?
उत्तर
10 से 250 तक की 4 से विभाज्य प्राकृत संख्याओं की सूची 12, 16, 20, 24, ..., 248 हैं।
मानो, 248 यह n वीं संख्या है।
यहाँ, a = 12 तथा d = 4 तथा tn = 248
tn = a + (n − 1) × d .............(सूत्र)
∴ 248 = 12 + (n − 1) × 4 .....(मान प्रतिस्थापित करने पर)
∴ 248 = 12 + 4n − 4
∴ 248 = 8 + 4n
∴ 248 − 8 = 4n
∴ 4n = 240
∴ n = 60
∴ 248 यह अनुक्रम की 60 वीं संख्या है।
∴ 10 से 250 तक 4 से विभाज्य 60 संख्याएँ हैं।
APPEARS IN
संबंधित प्रश्न
दी गई अंकगणितीय श्रृंखला के आधारपर रिक्त चौखटों मेंं उचित संख्या लिखिए।
1, 8, 15, 22, ...
यहाँ a = `square`, t1 = `square`, t2 = `square`, t3 = `square`, ...
t2 − t1 = `square - square = square`
t3 − t2 = `square - square = square`
∴ d = `square`
दी गई अंकगणितीय श्रृंखला के आधारपर रिक्त चौखटों मेंं उचित संख्या लिखिए।
70, 60, 50, 40, ...
यहाँ t1 = `square`, t2 = `square`, t3 = `square`, ...
∴ a = `square`, d = `square`
निम्नलिखित अनुक्रमणिका अंकगणितीय श्रृंखला है या नहीं निश्चित कीजिए। यदि हो तो उस श्रृंखला का 20 वाँ पद ज्ञात कीजिए।
−12, −5, 2, 9, 16, 23, 30, ...
तीन अंकोंवाली प्राकृत संख्या समूह मेंं 5 से विभाज्य संख्याएँ कितनी है? ज्ञात कीजिए।
किसी अंकगणितीय श्रृंखला का 11 वाँ पद 16 तथा 21 वाँ पद 29 हो तो श्रृंखला का 41 वाँ पद ज्ञात कीजिए।
11, 8, 5, 2, ... इस अंकगणितीय श्रृंखला मेंं संख्या −151 कौन-से क्रमांक का पद होगा?
15, 10, 5, ... इस अंकगणितीय श्रृंखला के प्रथम 10 पदों का योगफल __________ है।
किसी अंकगणितीय श्रृंखला का 4 था पद −15 और 9 वाँ पद −30 है तो पहले 10 पदों का योगफल ज्ञात कीजिए।
यदि किसी अंकगणितीय श्रृंखला के तीसरे तथा 8 वें पदों का योगफल 7 हो और 7 वें तथा 14 वें पदों का योगफल −3 हो तो 10 वाँ पद ज्ञात कीजिए।
एक अंकगणितीय श्रृंखला का पहला पद −5 और अंतिम पद 45 है। यदि उन सभी पदों का योगफल 120 हो तो वे कितने पद होंगे? और उनका सामान्य अंतर कितना होगा?