Advertisements
Advertisements
प्रश्न
`1/("cosec" theta - cot theta)` = cosec θ + cot θ हे सिद्ध करा.
उत्तर
डावी बाजू = `1/("cosec" theta - cot theta)`
= `1/("cosec" theta - cot theta) xx ("cosec"theta + cottheta)/("cosec"theta + cottheta)` ......[छेदाचे परिमेयकरण करून]
= `("cosec"theta + cottheta)/("cosec"^2theta - cot^2theta)` ......[∵ (a – b)(a + b) = a2 – b2]
= `("cosec"theta + cottheta)/1` ......`[(∵ 1 + cot^2θ = "cosec"^2θ),(∴ "cosec"^2θ - cot^2θ = 1)]`
= cosecθ + cotθ
= उजवी बाजू
∴ `1/("cosec" theta - cot theta)` = cosec θ + cot θ
APPEARS IN
संबंधित प्रश्न
12 मी रुंदीच्या रस्त्याच्या दुतर्फा समोरासमोर दोन इमारती आहेत. त्यांपैकी एकीची उंची 10 मी असून तिच्या छतावरून दुसरीच्या छताकडे पाहिले असता उन्नत कोन 60° मापाचा होतो, तर दुसऱ्या इमारतीची उंची किती?
जेव्हा आपण क्षितीजसमांतर रेषेच्या वरच्या दिशेने पाहतो, तेव्हा ______ कोन होतो.
एक मुलगा एका इमारतीपासून 48 मीटर अंतरावर उभा आहे. त्या इमारतीच्या वरच्या टोकाकडे पाहताना त्या मुलाला 30° मापाचा उन्नतकोन करावा लागतो, तर त्या इमारतीची उंची किती ?
`(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")` = हे सिद्ध करा.
tan θ × A = sin θ, तर A = ?
cosec θ – cot θ = `sin theta/(1 + cos theta)` हे सिद्ध करा.
∆ABC मध्ये, cos C = `12/13` असून BC = 24, तर AC = ?
जर sec A = `x + 1/(4x)`, sec A + tan A = 2x किंवा `1/(2x)` हे दाखवा.
∆ABC मध्ये, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, तर ∠A = ? , ∠B = ?, ∠C = ?
बाह्यस्पर्शी असलेल्या दोन वर्तुळाच्या त्रिज्या अनुक्रमे 5 सेमी व 3 सेमी असतील तर त्यांच्या केंद्रातील अंतर किती असेल?