Advertisements
Advertisements
प्रश्न
3900 रुपये 12 हप्त्याने असे परत केले, की प्रत्येक हप्ता हा आधीच्या हप्त्यापेक्षा 10 रुपये जास्त होता, तर पहिला व शेवटचा हप्ता किती रुपयांचा होता?
उत्तर
हप्ता योजना अंकगणिती श्रेढी आहे.
12 मासिक हप्त्यांत भरलेली रक्कम (S12) = 3900
हप्त्यांची संख्या (n) = 12
प्रत्येक हप्ता हा आधीच्या हप्त्यापेक्षी 10 रुपये जास्त होता.
∴ d = 10
आता, Sn = `"n"/2`[2a + (n – 1)d]
∴ S12 = `12/2`[2a + (12 – 1) (10)]
∴ 3900 = 6 [2a + 11(10)]
∴ 3900 = 6 (2a + 110)
∴ `3900/6` = 2a + 110
∴ 650 = 2a + 110
∴ 2a = 540
∴ a = `540/2 = 270`
tn = a + (n – 1)d
∴ t12 = 270 + (12 – 1)(10)
= 270 + 11(10)
= 270 + 110
= 380
∴ पहिला हप्ता 270 रुपयांचा आणि शेवटचा हप्ता 380 रुपयांचा होता.
APPEARS IN
संबंधित प्रश्न
सचिनने राष्ट्रीय बचत प्रमाणपत्रांमध्ये पहिल्या वर्षी ₹ 5000, दुसऱ्या वर्षी ₹ 7000, तिसऱ्या वर्षी ₹ 9000 याप्रमाणे रक्कम गुंतवली, तर त्याची 12 वर्षांतील एकूण गुंतवणूक किती?
कारगिल येथे एका आठवड्यातील सोमवार ते शनिवार या दिवसांच्या तापमानांची नोंद केली. त्या नोंदी अंकगणिती श्रेढीत आहेत असे आढळले. सोमवार व शनिवारच्या तापमानांची बेरीज मंगळवार व शनिवारच्या तापमानांच्या बेरजेपेक्षा 5° सेल्सिअसने जास्त आहे. जर बुधवारचे तापमान - 30° सेल्सिअस असेल, तर प्रत्येक दिवसाचे तापमान काढा.
₹ 1000 ही रक्कम 10 % सरळव्याज दराने गुंतवली, तर प्रत्येक वर्षाच्या शेवटी मिळणाऱ्या व्याजाची रक्कम अंकगणितीय श्रेढी होईल का हे तपासा. ती अंकगणितीय श्रेढी होत असेल, तर 20 वर्षांनंतर मिळणाऱ्या व्याजाची रक्कम काढा. त्यासाठी खालील कृती पूर्ण करा.
सरळव्याज = `("P" xx "R" xx "N")/100`
1 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 1)/100 = square`
2 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 2)/100 = square`
3 वर्षानंतर मिळणारे सरळव्याज = `(square xx square xx square)/100` = 300
अशाप्रकारे 4, 5, 6 वर्षांनंतर मिळणारे सरळव्याज अनुक्रमे 400, `square`, `square` असेल.
या संख्येवरून d = `square`, आणि a = `square`
20 वर्षांनंतर मिळणारे सरळव्याज
tn = a + (n - 1)d
t20 = `square` + (20 - 1)`square`
t20 = `square`
20 वर्षांनंतर मिळणारे एकूण व्याज = `square`
एका अंकगणिती श्रेढीत 37 पदे आहेत. सर्वांत मध्यावर असलेल्या तीन पदांची बेरीज 225 आहे आणि शेवटच्या तीन पदांची बेरीज 429 आहे, तर अंकगणिती श्रेढी लिहा.
1 ते n नैसर्गिक संख्यांची बेरीज 36 आहे, तर n ची किंमत काढा.
5 ने भाग जाणाऱ्या दोन अंकी संख्या किती आहेत?
कृती: –5 ने भाग जाणाऱ्या दोन अंकी संख्या 10, 15, 20 ......... 95., ह्या आहेत.
d = 5 असल्याने दिलेली क्रमिका अंकगणिती श्रेढी आहे.
येथे, , a = 10, d = 5, tn = 95, n = ?
tn = a + (n - 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n –1) × 5
`square` = (n –1)
म्हणून, n = `square`
5 ने भाग जाणाऱ्या दोन अंकी संख्या `square` आहेत.
कल्पना दर महिन्याला ठरावीक रक्कम बचत करते. तिने पहिल्या महिन्यात 100रु., दुसऱ्या महिन्यात 150रु., तिसऱ्या महिन्यात 200रु. याप्रमाणे बचत केली, तर किती महिन्यात 1200रु. बचत होईल?
कृती: कल्पनाची मासिक बचत 100 रु., 150 रु., 200 रु. ......... 1200 रु. अशी आहे.
येथे d = 50 रु. आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.
a = 100, d = 50, tn = `square`, n = ?
tn = a + (n – 1) `square`
`square` =100 + (n – 1) × 50
`square/50` = n - 1
n = `square`
म्हणून, 1200 रु. बचत `square` महिन्यात होईल.
मेरीला दरमहा 15000 रु. पगाराची नोकरी मिळाली, जर तिला दरमहा 100 रु. पगारवाढ मिळत असेल, तर 20 महिन्यांनंतर मेरीचा पगार किती होईल?
शर्वरीने एका महिला बचत गटात महिन्याच्या पहिल्या दिवशी 2 रु., दुसऱ्या दिवशी ४ रु., व तिसऱ्या दिवशी ६ रु. अशा तर्हेने पैसे गुंतवल्यास तिची फेब्रुवारी २०१० या महिन्याची एकूण बचत किती?
एका व्यापाराने 1000 रु. कर्जाऊ घेतले व त्यावरील 140 रु. व्याज व मुद्दल 12 हप्त्यात परत करण्याचे कबूल केले. प्रत्येक हप्त्याची रक्कम अगोदरच्या हप्त्यापेक्षा 10 रु. कमी आहे, तर त्याने पहिल्या हप्त्यात किती रक्कम परतफेड केली?