मराठी

A (5, 3), B (3, −2) Are Two Fixed Points; Find the Equation to the Locus of a Point P Which Moves So that the Area of the Triangle Pab is 9 Units. - Mathematics

Advertisements
Advertisements

प्रश्न

A (5, 3), B (3, −2) are two fixed points; find the equation to the locus of a point P which moves so that the area of the triangle PAB is 9 units.

बेरीज

उत्तर

Let P(h, k) be a point. Let the given points be A(5, 3) and B(3, -2)
\[\therefore\text{ Area of ∆ ABP }= \frac{1}{2}\left| \left\{ x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right\} \right|\]
\[ \Rightarrow 9 = \frac{1}{2}\left| \left\{ 5\left( - 2 - k \right) + 3\left( k - 3 \right) + h\left( 3 + 2 \right) \right\} \right|\]
\[ \Rightarrow \left| 5h - 2k - 19 \right| = 18\]
\[ \Rightarrow 5h - 2k - 19 = 18\text{ or }5h - 2k - 19 = - 18\]
\[ \Rightarrow 5h - 2k - 37 = 0\text{ or }5h - 2k - 1 = 0\]
Hence, the locus of (h, k) is
\[5x - 2y - 37 = 0\text{ or }5x - 2y - 1 = 0\]

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.2 | Q 7 | पृष्ठ १८

संबंधित प्रश्‍न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 

Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 

If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.

 

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


The vertices of a triangle are O (0, 0), A (a, 0) and B (0, b). Write the coordinates of its circumcentre.


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


If the points (1, −1), (2, −1) and (4, −3) are the mid-points of the sides of a triangle, then write the coordinates of its centroid.


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×