Advertisements
Advertisements
प्रश्न
A and B can build a wall in `6(2)/(3)` days. If A's one day work is `1(1)/(4)` of one day work of B, find in 4 how many days A and B alone can build the wall.
उत्तर
Let A alone will do the work in x days
and B alone will do the same work in y days.
Then, A's 1 day work = `(1)/x` and B's 1 day work = `(1)/y`
According to given information, we have
`(1)/x + (1)/y = (1)/(6(2)/(3)`
⇒ `(1)/x + (1)/y = (3)/(20)` ....(i)
And,
`(1)/x = 1(1)/(4) xx (1)/y`
⇒ `(1)/x - (5)/(4y)` = 0 ....(ii)
Subtracting eqn. (ii) from eqn. (i), we get
`(1)/y + (5)/(4y) = (3)/(20)`
⇒ `(9)/(4y) = (3)/(20)`
⇒ 4y = `(9 xx 20)/(3)` = 60
⇒ y = 15
⇒ `(1)/x - (5)/(4(15))` = 0
⇒ `(1)/x = (1)/(12)`
⇒ x = 12
Thus, A alone will do the work in 12 days and B alone will do the same work in 15 days.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
10% of x + 20% of y = 24
3x - y = 20
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`x/(3) + y/(4)` = 11
`(5x)/(6) - y/(3)` = -7
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
Solve the following pairs of equations:
`(xy)/(x + y) = (6)/(5)`
`(xy)/(y - x)` = 6
Where x + y ≠ 0 and y - x ≠ 0
Can the following equations hold simultaneously?
7y - 3x = 7
5y - 11x = 87
5x + 4y = 43
If yes, find the value of x and y.
Seven more than a 2-digit number is equal to two less than the number obtained by reversing the digits. The sum of the digits is 5. Find the number.
The present ages of Kapil and Karuna are in the ratio 2 : 3. Six years later, the ratio will be 5 : 7. Find their present ages.