Advertisements
Advertisements
प्रश्न
Seven more than a 2-digit number is equal to two less than the number obtained by reversing the digits. The sum of the digits is 5. Find the number.
उत्तर
Let x be the digit at ten's place and y be the digit at unit's place.
Then, the number is 10x + y.
Number obtained by reversing the digits = 10y + x
According to given information, we have
(10x + y) + 7 = (10y + x) - 2
⇒ 10x + y + 7 = 10y + x - 2
⇒ 9x - 9y = -9
⇒9(x - y) = -9
⇒ x - y = -1 ....(i)
Also, x + y = 5 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 4
⇒ x = 2
⇒ 2 + y = 5
⇒ y = 3
∴ Required number
= 10x + y
= 10 x 2 + 3
= 20 + 3
= 23.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
Solve the following pairs of equations:
`x/(3) + y/(4)` = 11
`(5x)/(6) - y/(3)` = -7
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
Solve the following pairs of equations:
`(2)/x + (3)/y = (9)/(xy)`
`(4)/x + (9)/y = (21)/(xy)`
Where x ≠ 0, y ≠ 0
`4x + 6/y = 15 and 6x - 8/y = 14.` Hence, find a if y = ax - 2.
A boat goes 18 km upstream in 3 hours and 24 km downstream in 2 hours. Find the speed of the boat in still water and the speed of the stream.
Salman and Kirti start at the same time from two places 28 km apart. If they walk in the same direction, Salman overtakes Kirti in 28 hours but if they walk in the opposite directions, they meet in 4 hours. Find their speeds (in km/h).
Two mobiles S1 and S2 are sold for Rs. 10,490 making 4% profit on S1 and 6% on S2. If the two mobiles are sold for Rs.10,510, a profit of 6% is made on S1 and 4% on S2. Find the cost price of both the mobiles.