Advertisements
Advertisements
प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
उत्तर
3 - (x - 5) = y + 2
∴ 3 - x + 5 = y + 2
∴ - x + 8 = y + 2
∴ x + y = 6 ....(1)
2( x + y ) = 4 - 3y
∴ 2x + 2y = 4 - 3y
∴ 2x + 5y = 4 .....(2)
Multiplying equation no (1) by 2.
2x + 2y = 12 .....(3)
Subtracting equation (2) from (3)
2x + 2y = 12
- 2x + 5y = 4
- - -
- 3y = 8
y = - `8/3`
From (1)
x - `8/3` = 6
⇒ x = `26/3`
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
10% of x + 20% of y = 24
3x - y = 20
Solve the following simultaneous equations :
6x + 3y = 7xy
3x + 9y = 11xy
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following pairs of equations:
`(3)/(2x) + (2)/(3y)` = 5
`(5)/x - (3)/y` = 1
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
If the following three equations hold simultaneously for x and y, find the value of 'm'.
2x + 3y + 6 = 0
4x - 3y - 8 = 0
x + my - 1 = 0
9 pens and 5 pencils cost Rs.32, and 7 pens and 8 pencils cost Rs.29. Find the unit price for each pen and pencil.