Advertisements
Advertisements
प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
उत्तर
3 - (x - 5) = y + 2
∴ 3 - x + 5 = y + 2
∴ - x + 8 = y + 2
∴ x + y = 6 ....(1)
2( x + y ) = 4 - 3y
∴ 2x + 2y = 4 - 3y
∴ 2x + 5y = 4 .....(2)
Multiplying equation no (1) by 2.
2x + 2y = 12 .....(3)
Subtracting equation (2) from (3)
2x + 2y = 12
- 2x + 5y = 4
- - -
- 3y = 8
y = - `8/3`
From (1)
x - `8/3` = 6
⇒ x = `26/3`
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following simultaneous equations :
6x + 3y = 7xy
3x + 9y = 11xy
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`(3)/(2x) + (2)/(3y)` = 5
`(5)/x - (3)/y` = 1
Solve the following pairs of equations:
`(2)/(x + 1) - (1)/(y - 1) = (1)/(2)`
`(1)/(x + 1) + (2)/(y - 1) = (5)/(2)`
A and B can build a wall in `6(2)/(3)` days. If A's one day work is `1(1)/(4)` of one day work of B, find in 4 how many days A and B alone can build the wall.