Advertisements
Advertisements
प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
उत्तर
The given pair of linear equations are
`[ x - y ]/6 = 2( 4 - x )`
⇒ x - y = 12(4 - x)
⇒ x - y = 48 - 12x
⇒ 13x - y = 48 ....(1) [ On simplifying ]
2x + y = 3( x - 4 )
⇒ 2x + y = 3x - 12
⇒ x - y = 12 .....(2) [ On simplifying ]
Multiply equation (2) by 13, We get,
13x - 13y = 156 .....(3)
Subtracting equation (1) from (3)
13x - 13y = 156
- 13x - y = 48
- + -
- 12y = 108
y = - 9
Substituting y = - 9 in equation (1), we get
13x - ( - 9) = 48
⇒ 13x = 39
⇒ x = 3
∴ Solution is x = 3 and y = - 9.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`1/5( x - 2 ) = 1/4( 1 - y )`
26x + 3y + 4 = 0
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following simultaneous equations:
65x - 33y = 97
33x - 65y = 1
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`(2)/(x + 1) - (1)/(y - 1) = (1)/(2)`
`(1)/(x + 1) + (2)/(y - 1) = (5)/(2)`
If 10y = 7x - 4 and 12x + 18y = 1 ; find the value of 4x + 6y and 8y - x.
Can the following equations hold simultaneously?
7y - 3x = 7
5y - 11x = 87
5x + 4y = 43
If yes, find the value of x and y.
If the following three equations hold simultaneously for x and y, find the value of 'm'.
2x + 3y + 6 = 0
4x - 3y - 8 = 0
x + my - 1 = 0
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.