Advertisements
Advertisements
प्रश्न
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.
उत्तर
Cost of an eraser = Rs. x
Cost of a sharpener = Rs. y
According to given information, we have
x = y - 1.50
⇒ x - y = -1.50 ....(i)
And, 4x + 3y = 29 ....(ii)
Multiplying eqn. (i) by 3, we get
3x - 3y = -450 ....(iii)
Adding eqns. (ii) and (iii), we get
7x = 24.50
⇒ x = 3.50
⇒ 3.50 - y = -1.50
⇒ y
= 3.50 + 1.50
= 5
Thus, the cost of an eraser is Rs.3.50 and that of a sharpener is Rs.5.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following pairs of equations:
y - x = 0.8
`(13)/(2(x + y)) = 1`
`(3)/x - (2)/y` = 0 and `(2)/x + (5)/y` = 19, Hence, find a if y = ax + 3.
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.
The ratio of two numbers is `(2)/(5)`. If 4 is added in first and 32 is subtracted from the second, the ratio becomes the reciprocal of the original ratio. Find the numbers.
Sunil and Kafeel both have some oranges. If Sunil gives 2 oranges to Kafeel, then Kafeel will have thrice as many as Sunil. And if Kafeel gives 2 oranges to Sunil, then they will have the same numbers of oranges. How many oranges does each have?