Advertisements
Advertisements
प्रश्न
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.
उत्तर
Let the speed of the person in still water be x km/hr
and the speed of the stream be y km/hr.
Speed of the person downstream = (x + y)km/hr
Speed of the person upstream = (x - y)km/hr
Time required to go 8 km downstream
= 40 minutes
= `(40)/(60)"hours"`
= `(2)/(3)"hours"`
⇒ `(8)/(x + y) = (2)/(3)`
⇒ `(4)/(x + y) = (1)/(3)`
⇒ 12 = x + y
⇒ x + y = 12 ....(i)
Time required to go 8 km upstream = 1 hour
⇒ `(8)/(x + y) = 1`
⇒ 8 = x - y
⇒ x - y = 8 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 20
⇒ x = 10
⇒ 10 - y = 8
⇒ y = 2
Thus, the speed of the person in still water is 10 km/hr and the speed of the stream is 2 km/hr.
APPEARS IN
संबंधित प्रश्न
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following simultaneous equations:
13a - 11b = 70
11a - 13b = 74
Solve the following pairs of equations:
`(3)/(2x) + (2)/(3y)` = 5
`(5)/x - (3)/y` = 1
If 2 is added to the numerator and denominator it becomes `(9)/(10)` and if 3 is subtracted from the numerator and denominator it becomes `(4)/(5) `Find the fraction.
A boat goes 18 km upstream in 3 hours and 24 km downstream in 2 hours. Find the speed of the boat in still water and the speed of the stream.
A solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol. How much of each solution should be used?