Advertisements
Advertisements
प्रश्न
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
उत्तर
8v - 3u = 5uv
6v - 5u = -2uv
Dividing both sides of each equation by uv, we get,
`(8)/u - (3)/v` = 5..........(1)
`(6)/u - (5)/v` = -2.........(2)
Multiplying (1) by 3 and (2) by 4, we get,
`(24)/u - (9)/v` = 15.......(3)
`(24)/u - (20)/v` = -8........(4)
Subtracting (4) from (3), we get,
`(11)/v` = 23
⇒ v = `(11)/(23)`
∴ `(6)/u - (5)/(11) xx 23` = -2
⇒ `(6)/u - (115)/(11)` = -2
⇒ `(6)/u`
= `-2 + (115)/(11)`
= `(-22 + 115)/(11)`
= `(93)/(11)`
⇒ u = `(6 xx 11)/(93)`
= `(22)/(31)`
Thus, the solution set is `(22/11 , 11/23)`.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13 + 2y = 9x
3y = 7x
Solve for x and y:
4x = 17 - `[ x - y ]/8`
2y + x = 2 + `[ 5y + 2 ]/3`
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
Solve the following pairs of equations:
`(xy)/(x + y) = (6)/(5)`
`(xy)/(y - x)` = 6
Where x + y ≠ 0 and y - x ≠ 0
If 10y = 7x - 4 and 12x + 18y = 1 ; find the value of 4x + 6y and 8y - x.
`(3)/x - (2)/y` = 0 and `(2)/x + (5)/y` = 19, Hence, find a if y = ax + 3.
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.
Seven more than a 2-digit number is equal to two less than the number obtained by reversing the digits. The sum of the digits is 5. Find the number.
9 pens and 5 pencils cost Rs.32, and 7 pens and 8 pencils cost Rs.29. Find the unit price for each pen and pencil.