Advertisements
Advertisements
प्रश्न
Seven more than a 2-digit number is equal to two less than the number obtained by reversing the digits. The sum of the digits is 5. Find the number.
उत्तर
Let x be the digit at ten's place and y be the digit at unit's place.
Then, the number is 10x + y.
Number obtained by reversing the digits = 10y + x
According to given information, we have
(10x + y) + 7 = (10y + x) - 2
⇒ 10x + y + 7 = 10y + x - 2
⇒ 9x - 9y = -9
⇒9(x - y) = -9
⇒ x - y = -1 ....(i)
Also, x + y = 5 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 4
⇒ x = 2
⇒ 2 + y = 5
⇒ y = 3
∴ Required number
= 10x + y
= 10 x 2 + 3
= 20 + 3
= 23.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients:
y = 2x - 6; y = 0
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
If 10y = 7x - 4 and 12x + 18y = 1; find the values of 4x + 6y and 8y - x.
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
Solve :
`[ 7 + x ]/5 - [ 2x - y ]/4 = 3y - 5`
`[5y - 7]/2 + [ 4x - 3 ]/6 = 18 - 5x`
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solve the following pairs of equations:
`(3)/(2x) + (2)/(3y)` = 5
`(5)/x - (3)/y` = 1
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
If 2x + y = 23 and 4x - y = 19 : find the value of x - 3y and 5y - 2x.
The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes `(1)/(2)`. Find the fraction.