Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
`(3)/(2x) + (2)/(3y)` = 5
`(5)/x - (3)/y` = 1
उत्तर
The given equations are `(3)/(2x) + (2)/(3y) = 5` and `(5)/x - (3)/y` = 1
Let `(1)/x = "a" and (1)/y = "b"`
Then, we have
`(3)/(2)"a" + (2)/(3)"b"` = 5
⇒ 9a + 4b = 30 ....(i)
And, 5a - 3b = 1 ....(ii)
Multiplying eqn. (i) by 3 and eqn. (ii) by 4, we get
27a + 12b = 90 ....(iii)
20a - 12b = 4 ....(iv)
Adding rqns. (iii) and (iv), we get
47a = 94
⇒ a = 2
⇒ `(1)/x ` = 2
⇒ x = `(1)/(2)`
Substituting the value of a (i), we get
9(2) + 4b = 30
⇒ 18 + 4b = 30
⇒ 4b = 12
⇒ b = 3
⇒ `(1)/y` = 3
⇒ y = `(1)/(3)`
Thus, the solution set is `(1/2, 1/3)`.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
Solve for x and y:
4x = 17 - `[ x - y ]/8`
2y + x = 2 + `[ 5y + 2 ]/3`
The value of expression mx - ny is 3 when x = 5 and y = 6. And its value is 8 when x = 6 and y = 5. Find the values of m and n.
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
The length of a rectangle is twice its width. If its perimeter is 30 units, find its dimensions.
The sum of a two-digit number and the number obtained by reversing the digits is 110 and the difference of two digits is 2. Find the number.
A solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol. How much of each solution should be used?
A and B can build a wall in `6(2)/(3)` days. If A's one day work is `1(1)/(4)` of one day work of B, find in 4 how many days A and B alone can build the wall.