Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
`(3)/(2x) + (2)/(3y)` = 5
`(5)/x - (3)/y` = 1
उत्तर
The given equations are `(3)/(2x) + (2)/(3y) = 5` and `(5)/x - (3)/y` = 1
Let `(1)/x = "a" and (1)/y = "b"`
Then, we have
`(3)/(2)"a" + (2)/(3)"b"` = 5
⇒ 9a + 4b = 30 ....(i)
And, 5a - 3b = 1 ....(ii)
Multiplying eqn. (i) by 3 and eqn. (ii) by 4, we get
27a + 12b = 90 ....(iii)
20a - 12b = 4 ....(iv)
Adding rqns. (iii) and (iv), we get
47a = 94
⇒ a = 2
⇒ `(1)/x ` = 2
⇒ x = `(1)/(2)`
Substituting the value of a (i), we get
9(2) + 4b = 30
⇒ 18 + 4b = 30
⇒ 4b = 12
⇒ b = 3
⇒ `(1)/y` = 3
⇒ y = `(1)/(3)`
Thus, the solution set is `(1/2, 1/3)`.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
Solve :
`[ 7 + x ]/5 - [ 2x - y ]/4 = 3y - 5`
`[5y - 7]/2 + [ 4x - 3 ]/6 = 18 - 5x`
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
If the following three equations hold simultaneously for x and y, find the value of 'm'.
2x + 3y + 6 = 0
4x - 3y - 8 = 0
x + my - 1 = 0
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.
In a triangle, the sum of two angles is equal to the third angle. If the difference between these two angles is 20°, determine all the angles.
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.
Salman and Kirti start at the same time from two places 28 km apart. If they walk in the same direction, Salman overtakes Kirti in 28 hours but if they walk in the opposite directions, they meet in 4 hours. Find their speeds (in km/h).
A and B can build a wall in `6(2)/(3)` days. If A's one day work is `1(1)/(4)` of one day work of B, find in 4 how many days A and B alone can build the wall.