Advertisements
Advertisements
प्रश्न
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.
उत्तर
Let the speed of the person in still water be x km/hr
and the speed of the stream be y km/hr.
Speed of the person downstream = (x + y)km/hr
Speed of the person upstream = (x - y)km/hr
Time required to go 8 km downstream
= 40 minutes
= `(40)/(60)"hours"`
= `(2)/(3)"hours"`
⇒ `(8)/(x + y) = (2)/(3)`
⇒ `(4)/(x + y) = (1)/(3)`
⇒ 12 = x + y
⇒ x + y = 12 ....(i)
Time required to go 8 km upstream = 1 hour
⇒ `(8)/(x + y) = 1`
⇒ 8 = x - y
⇒ x - y = 8 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 20
⇒ x = 10
⇒ 10 - y = 8
⇒ y = 2
Thus, the speed of the person in still water is 10 km/hr and the speed of the stream is 2 km/hr.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients:
y = 2x - 6; y = 0
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
10% of x + 20% of y = 24
3x - y = 20
Solve the following simultaneous equations :
6x + 3y = 7xy
3x + 9y = 11xy
Solve the following simultaneous equations:
41x + 53y = 135
53x + 41y = 147
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`(2)/x + (3)/y = (9)/(xy)`
`(4)/x + (9)/y = (21)/(xy)`
Where x ≠ 0, y ≠ 0
If the following three equations hold simultaneously for x and y, find the value of 'm'.
2x + 3y + 6 = 0
4x - 3y - 8 = 0
x + my - 1 = 0
The sum of a two-digit number and the number obtained by reversing the digits is 110 and the difference of two digits is 2. Find the number.