Advertisements
Advertisements
प्रश्न
A boat goes 18 km upstream in 3 hours and 24 km downstream in 2 hours. Find the speed of the boat in still water and the speed of the stream.
उत्तर
Let the speed of the boat in still water be x km/hr
and the speed of the stream be y km/hr.
Speed of the boat upstream = (x - y)km/hr.
Speed of the boat downstream = (x + y)km/hr
Time required to go 18 km upstream = 3 hours
⇒ `(18)/(x - y)` = 3
⇒ `(6)/(x - y)` = 1
⇒ x - y = 6 ....(i)
Time required to go 24 km downstream = 2 hours
⇒`(24)/(x + y)` = 2
⇒ `(12)/(x + y)` = 1
⇒ x + y = 12 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 18
⇒ x = 9
⇒ 9 - y = 6
⇒ y = 3
Thus, the speed of the boat in still water is 9 km/hr and the speed of the stream is 3km/hr.
APPEARS IN
संबंधित प्रश्न
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
10% of x + 20% of y = 24
3x - y = 20
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
Solve the following pairs of equations:
`(2)/x + (3)/y = (9)/(xy)`
`(4)/x + (9)/y = (21)/(xy)`
Where x ≠ 0, y ≠ 0
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
`(3)/x - (2)/y` = 0 and `(2)/x + (5)/y` = 19, Hence, find a if y = ax + 3.
Can the following equations hold simultaneously?
7y - 3x = 7
5y - 11x = 87
5x + 4y = 43
If yes, find the value of x and y.
The length of a rectangle is twice its width. If its perimeter is 30 units, find its dimensions.
The present ages of Kapil and Karuna are in the ratio 2 : 3. Six years later, the ratio will be 5 : 7. Find their present ages.
A solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol. How much of each solution should be used?