Advertisements
Advertisements
Question
A boat goes 18 km upstream in 3 hours and 24 km downstream in 2 hours. Find the speed of the boat in still water and the speed of the stream.
Solution
Let the speed of the boat in still water be x km/hr
and the speed of the stream be y km/hr.
Speed of the boat upstream = (x - y)km/hr.
Speed of the boat downstream = (x + y)km/hr
Time required to go 18 km upstream = 3 hours
⇒ `(18)/(x - y)` = 3
⇒ `(6)/(x - y)` = 1
⇒ x - y = 6 ....(i)
Time required to go 24 km downstream = 2 hours
⇒`(24)/(x + y)` = 2
⇒ `(12)/(x + y)` = 1
⇒ x + y = 12 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 18
⇒ x = 9
⇒ 9 - y = 6
⇒ y = 3
Thus, the speed of the boat in still water is 9 km/hr and the speed of the stream is 3km/hr.
APPEARS IN
RELATED QUESTIONS
If 10y = 7x - 4 and 12x + 18y = 1; find the values of 4x + 6y and 8y - x.
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
Solve the following simultaneous equations:
41x + 53y = 135
53x + 41y = 147
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
If 2x + y = 23 and 4x - y = 19 : find the value of x - 3y and 5y - 2x.
Can the following equations hold simultaneously?
7y - 3x = 7
5y - 11x = 87
5x + 4y = 43
If yes, find the value of x and y.
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.
Two mobiles S1 and S2 are sold for Rs. 10,490 making 4% profit on S1 and 6% on S2. If the two mobiles are sold for Rs.10,510, a profit of 6% is made on S1 and 4% on S2. Find the cost price of both the mobiles.