Advertisements
Advertisements
Question
Solve the following simultaneous equations:
41x + 53y = 135
53x + 41y = 147
Solution
The given equations are
41x + 53y = 135 ....(i)
53x + 41y = 147 ....(ii)
Multiplying eqn. (i) by 53 and eqn. (ii) by 41, we get
2173x + 2809y = 7155 ....(iii)
2173x + 1681y = 6027 ....(iv)
Subtracting eqn. (iv) from eq. (iii), we get
1128y = 1128
⇒ y = 1
Substituting the value of y in eqn. (i), we get
41x + 53(1) = 135
⇒ 41x + 53 = 135
⇒ 41x = 135 - 53
⇒ 41x = 82
⇒ x = 2
Thus, the solution set is (2, 1).
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13x+ 11y = 70
11x + 13y = 74
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.
In a triangle, the sum of two angles is equal to the third angle. If the difference between these two angles is 20°, determine all the angles.
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.
Two mobiles S1 and S2 are sold for Rs. 10,490 making 4% profit on S1 and 6% on S2. If the two mobiles are sold for Rs.10,510, a profit of 6% is made on S1 and 4% on S2. Find the cost price of both the mobiles.