Advertisements
Advertisements
Question
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
Solution
The given equations are `(5)/(x + y) - (2)/(x - y)` = -1 and `(15)/(x + y) + (7)/(x - y)` = 10.
Let `(1)/(x + y) = "a" and (1)/(x - y) = "b"`
Then, we have
5a + 7b = -1 ...(i)
15a + 7b = 10 ....(ii)
Multiplying eqn. (i) by 3, we get
15a - 6b = -3
Subtracting eqn. (iii) from eqn. (ii), we get
13b = 13
⇒ b = 1
Substituting the value of b in eqn. (i), we get
5a - 2(1) = -1
⇒ 5a = 1
⇒ a = `(1)/(5)`
⇒ x + y = 5 and x - y = 1
Adding these two equations, we get
2x = 6
⇒ x = 3
⇒ 3 + y = 5
⇒ y = 2
Thus, the solution set is (3, 2).
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13x+ 11y = 70
11x + 13y = 74
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following simultaneous equations:
65x - 33y = 97
33x - 65y = 1
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
`4x + 6/y = 15 and 6x - 8/y = 14.` Hence, find a if y = ax - 2.
The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes `(1)/(2)`. Find the fraction.
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.
A solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol. How much of each solution should be used?
Two mobiles S1 and S2 are sold for Rs. 10,490 making 4% profit on S1 and 6% on S2. If the two mobiles are sold for Rs.10,510, a profit of 6% is made on S1 and 4% on S2. Find the cost price of both the mobiles.