Advertisements
Advertisements
Question
`4x + 6/y = 15 and 6x - 8/y = 14.` Hence, find a if y = ax - 2.
Solution
`4x + 6/y` = 15.........(1)
`6x - 8/y` = 14 ........(2)
Multiplying (1) by 4 and (2) by 3, we get,
`16x + (24)/y` = 60 ........(3)
`18x - (24)/y` = 42 ........(4)
Adding (3) and (4), we get,
34x = 102
⇒ x = `(102)/(34) = 3`
∴ `(6)/y`
= 15 - 4x
= 15 - 12
= 3
⇒ y = `(6)/(3) = 2`
Thus, the solution set is (3, 2).
Now,
y = ax - 2
⇒ 2 = 3a - 2
⇒ 3a - 4
⇒ a = `(4)/(3)`
= `1(1)/(3)`.
APPEARS IN
RELATED QUESTIONS
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
The value of expression mx - ny is 3 when x = 5 and y = 6. And its value is 8 when x = 6 and y = 5. Find the values of m and n.
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following simultaneous equations:
65x - 33y = 97
33x - 65y = 1
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
If 2x + y = 23 and 4x - y = 19 : find the value of x - 3y and 5y - 2x.
If the following three equations hold simultaneously for x and y, find the value of 'm'.
2x + 3y + 6 = 0
4x - 3y - 8 = 0
x + my - 1 = 0
The present ages of Kapil and Karuna are in the ratio 2 : 3. Six years later, the ratio will be 5 : 7. Find their present ages.
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.