Advertisements
Advertisements
Question
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
Solution
The given equations are `(3)/x - (1)/y` = -9 and `(2)/x + (3)/y` = 5
Let `(1)/x = "a" and (1)/y = "b"`
Then, we have
3a - b = -9 ....(i)
2a + 3b = 5 ....(ii)
Multiplying eqn. (i) by 3, we get
9a - 3b = -27 ....(iii)
Adding eqns. (ii) and (iii), we get
11a = -22
⇒ a = -2
⇒`(1)/x` = -2
⇒ x = `-(1)/(2)`
Substituting the value of a in eqn. (i), we get
3(-2) -b = -9
⇒ -6 - b = -9
⇒ b = -6 + 9
⇒ b = 3
⇒ `(1)/y` = 3
⇒ y = `(1)/(3)`
Thus, the solution set is `(-1/2, 1/3)`.
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
If 10y = 7x - 4 and 12x + 18y = 1; find the values of 4x + 6y and 8y - x.
Solve the following simultaneous equations:
13a - 11b = 70
11a - 13b = 74
Solve the following simultaneous equations:
65x - 33y = 97
33x - 65y = 1
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
Solve the following pairs of equations:
`(xy)/(x + y) = (6)/(5)`
`(xy)/(y - x)` = 6
Where x + y ≠ 0 and y - x ≠ 0
`4x + 6/y = 15 and 6x - 8/y = 14.` Hence, find a if y = ax - 2.
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.