Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
उत्तर
The given equations are `(5)/(x + y) - (2)/(x - y)` = -1 and `(15)/(x + y) + (7)/(x - y)` = 10.
Let `(1)/(x + y) = "a" and (1)/(x - y) = "b"`
Then, we have
5a + 7b = -1 ...(i)
15a + 7b = 10 ....(ii)
Multiplying eqn. (i) by 3, we get
15a - 6b = -3
Subtracting eqn. (iii) from eqn. (ii), we get
13b = 13
⇒ b = 1
Substituting the value of b in eqn. (i), we get
5a - 2(1) = -1
⇒ 5a = 1
⇒ a = `(1)/(5)`
⇒ x + y = 5 and x - y = 1
Adding these two equations, we get
2x = 6
⇒ x = 3
⇒ 3 + y = 5
⇒ y = 2
Thus, the solution set is (3, 2).
APPEARS IN
संबंधित प्रश्न
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
Solve for x and y:
4x = 17 - `[ x - y ]/8`
2y + x = 2 + `[ 5y + 2 ]/3`
Solve :
`[ 7 + x ]/5 - [ 2x - y ]/4 = 3y - 5`
`[5y - 7]/2 + [ 4x - 3 ]/6 = 18 - 5x`
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
`(3)/x - (2)/y` = 0 and `(2)/x + (5)/y` = 19, Hence, find a if y = ax + 3.
Can the following equations hold simultaneously?
7y - 3x = 7
5y - 11x = 87
5x + 4y = 43
If yes, find the value of x and y.
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.
A solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol. How much of each solution should be used?
Sunil and Kafeel both have some oranges. If Sunil gives 2 oranges to Kafeel, then Kafeel will have thrice as many as Sunil. And if Kafeel gives 2 oranges to Sunil, then they will have the same numbers of oranges. How many oranges does each have?