Advertisements
Advertisements
Question
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
Solution
41x + 53y = 135 ...(1)
53x + 41y = 147 ...(2)
Adding equation (1) and (2)
41x + 53y = 135
+ 53x + 41y = 147
94x + 94y = 282
Dividing by 94,
x + y = 3 ....(3)
Subtracting equation (2) from (1)
41x + 53y = 135
- 53x + 41y = 147
- - -
- 12x + 12y = - 12
Dividing by 12,
- x + y = -1 ....(4)
Adding (3) and (4)
x + y = 3
+ - x + y = -1
2y = 2
y = 1
From (3)
x + y = 3
x + 1 = 3
x = 2
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13 + 2y = 9x
3y = 7x
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3x - y = 23
`x/3 + y/4 = 4`
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
If 10y = 7x - 4 and 12x + 18y = 1; find the values of 4x + 6y and 8y - x.
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
If 10y = 7x - 4 and 12x + 18y = 1 ; find the value of 4x + 6y and 8y - x.
If the following three equations hold simultaneously for x and y, find the value of 'm'.
2x + 3y + 6 = 0
4x - 3y - 8 = 0
x + my - 1 = 0
The length of a rectangle is twice its width. If its perimeter is 30 units, find its dimensions.
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.