Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
उत्तर
The given equations are `(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)` and `(5)/(3x + 2y) + (1)/(3x - 2y)` = 2.
Let `(1)/(3x + 2y) = "a" and (1)/(3x - 2y) = "b"`
Then, we have
2a + 3b = `(17)/(5)` ....(i)
5a + b = 2 ....(ii)
Multiplying eqn. (i) by 5 and eqn. (ii) by 2, we get
10a + 15b = 17 ....(iii)
10a + 2b = 4 ....(iv)
Subtracting eqn. (iv) from eqn. (iii), we get
13b = 13
⇒ b = 1
Substituting the value of b in eqn. (ii), we get
5a + 1 = 2
⇒ 5a = 1
⇒ a = `(1)/(5)`
⇒ 3x + 2y = 5 and 3x - 2y = 1
Adding these two eqations, weget
6x = 6
⇒ x = 1
⇒ 3(1) + 2y = 5
⇒ 2y = 2
⇒ y = 1
Thus, the solution set is (1, 1).
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3x - y = 23
`x/3 + y/4 = 4`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
The value of expression mx - ny is 3 when x = 5 and y = 6. And its value is 8 when x = 6 and y = 5. Find the values of m and n.
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following pairs of equations:
`(xy)/(x + y) = (6)/(5)`
`(xy)/(y - x)` = 6
Where x + y ≠ 0 and y - x ≠ 0
The sum of a two-digit number and the number obtained by reversing the digits is 110 and the difference of two digits is 2. Find the number.
If 2 is added to the numerator and denominator it becomes `(9)/(10)` and if 3 is subtracted from the numerator and denominator it becomes `(4)/(5) `Find the fraction.