Advertisements
Advertisements
प्रश्न
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
उत्तर
`4x + [ x - y ]/8 = 17` (Given)
⇒ 32x + x - y = 136
⇒ 33x - y = 136 ......(1)
`2y + x - [ 5y + 2 ]/3 = 2` (Given)
⇒ 6y + 3x - 5y - 2 = 6
⇒ 3x + y = 8 .......(2)
Adding equations (1) and (2), we get
33x - y = 136
+ 3x + y = 8
36x = 144
x = 4
Substituting x = 4 in equation (2), We get
3 x 4 + y = 8
⇒ 12 + y = 8
⇒ y = 8 - 12
⇒ y = - 4
∴ Solution is x = 4 and y = - 4
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following pairs of equations:
`(3)/x - (1)/y` = -9
`(2)/x + (3)/y` = 5
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
The present ages of Kapil and Karuna are in the ratio 2 : 3. Six years later, the ratio will be 5 : 7. Find their present ages.
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.
9 pens and 5 pencils cost Rs.32, and 7 pens and 8 pencils cost Rs.29. Find the unit price for each pen and pencil.
Two mobiles S1 and S2 are sold for Rs. 10,490 making 4% profit on S1 and 6% on S2. If the two mobiles are sold for Rs.10,510, a profit of 6% is made on S1 and 4% on S2. Find the cost price of both the mobiles.