Advertisements
Advertisements
Question
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solution
`4x + [ x - y ]/8 = 17` (Given)
⇒ 32x + x - y = 136
⇒ 33x - y = 136 ......(1)
`2y + x - [ 5y + 2 ]/3 = 2` (Given)
⇒ 6y + 3x - 5y - 2 = 6
⇒ 3x + y = 8 .......(2)
Adding equations (1) and (2), we get
33x - y = 136
+ 3x + y = 8
36x = 144
x = 4
Substituting x = 4 in equation (2), We get
3 x 4 + y = 8
⇒ 12 + y = 8
⇒ y = 8 - 12
⇒ y = - 4
∴ Solution is x = 4 and y = - 4
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3x - y = 23
`x/3 + y/4 = 4`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients:
y = 2x - 6; y = 0
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3 - (x - 5) = y + 2
2 (x + y) = 4 - 3y
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
If 10y = 7x - 4 and 12x + 18y = 1; find the values of 4x + 6y and 8y - x.
10% of x + 20% of y = 24
3x - y = 20
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following simultaneous equations:
65x - 33y = 97
33x - 65y = 1
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.