Advertisements
Advertisements
प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13 + 2y = 9x
3y = 7x
उत्तर
13 + 2y = 9x ...(1)
3y = 7x ...(2)
Multiplying equation no. (1) by 3 and (2) by 2, we get,
39 + 6y = 27x ...(1)
+ 6y = 14x ...(2)
- - -
39 = 13x
x = 3
From (2)
3y = 7x
∴ 3y = 7(3)
∴ y = `21/3` = 7
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients:
y = 2x - 6; y = 0
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
The ratio of two numbers is `(2)/(5)`. If 4 is added in first and 32 is subtracted from the second, the ratio becomes the reciprocal of the original ratio. Find the numbers.
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.
A and B can build a wall in `6(2)/(3)` days. If A's one day work is `1(1)/(4)` of one day work of B, find in 4 how many days A and B alone can build the wall.