Advertisements
Advertisements
प्रश्न
A bag contains 4 white and 5 black balls. Another bag contains 9 white and 7 black balls. A ball is transferred from the first bag to the second and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.
उत्तर
Let W1 and W2 be two bags containing (4W, 5B) and (9W, 7B) balls respectively.
Let E1 be the event that the transferred ball from the bag W1 to W2 is white and E2 the event that the transferred ball is black.
And E be the event that the ball drawn from the second bag is white.
∴ `"P"("E"_1/"E"_1) = 10/17`
`"P"("E"/"E"_2) = 9/17`
`"P"("E"_1) = 4/9` and `"P"("E"_2) = 5/9`
∴ P(E) = `"P"("E"_1)."P"("E"/"E"_1) + "P"("E"_2)."P"("E"/"E"_2)`
= `4/9 xx 10/17 + 5/9 xx 9/17`
= `40/153 + 45/153`
= `85/153`
= `5/9`
Hence, the required probability is `5/9`.
APPEARS IN
संबंधित प्रश्न
A coin is tossed 5 times. What is the probability of getting at least 3 heads?
A pair of dice is thrown 6 times. If getting a total of 9 is considered a success, what is the probability of at least 5 successes?
Find the probability of 4 turning up at least once in two tosses of a fair die.
A problem is given to three students whose chances of solving it are `1/4, 1/5` and `1/3` respectively. Find the probability that the problem is solved.
Bag A contains 1 white, 2 blue and 3 red balls. Bag B contains 3 white, 3 blue and 2 red balls. Bag C contains 2 white, 3 blue and 4 red balls. One bag is selected at random and then two balls are drawn from the selected bag. Find the probability that the balls draw n are white and red.
One dialing certain telephone numbers assume that on an average, one telephone number out of five is busy, Ten telephone numbers are randomly selected and dialed. Find the probability that at least three of them will be busy.
In an automobile factory, certain parts are to be fixed into the chassis in a section before it moves into another section. On a given day, one of the three persons A, B, and C carries out this task. A has a 45% chance, B has a 35% chance and C has a 20% chance of doing the task.
The probability that A, B, and C will take more than the allotted time is `(1)/(6), (1)/(10), and (1)/(20)` respectively. If it is found that the time taken is more than the allotted time, what is the probability that A has done the task?
State the sample space and n(S) for the following random experiment.
A coin is tossed twice. If a second throw results in a tail, a die is thrown.
A coin and a die are tossed. State sample space of following event.
B: Getting a prime number.
Find total number of distinct possible outcomes n(S) of the following random experiment.
From a group of 4 boys and 3 girls, any two students are selected at random.
Two dice are thrown. Write favourable Outcomes for the following event.
P: Sum of the numbers on two dice is divisible by 3 or 4.
Prove that P(A) = `"P"("A" ∩ "B") + "P"("A" ∩ bar"B")`
Prove that P(A ∪ B) = `"P"("A" ∩ "B") + "P"("A" ∩ bar"B") + "P"(bar"A" ∩ bar"B")`
A box has 5 blue and 4 red balls. One ball is drawn at random and not replaced. Its colour is also not noted. Then another ball is drawn at random. What is the probability of second ball being blue?
Four cards are successively drawn without replacement from a deck of 52 playing cards. What is the probability that all the four cards are kings?
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A lot of 100 watches is known to have 10 defective watches. If 8 watches are selected (one by one with replacement) at random, what is the probability that there will be at least one defective watch?
A die is thrown three times. Let X be ‘the number of twos seen’. Find the expectation of X.
A and B throw a pair of dice alternately. A wins the game if he gets a total of 6 and B wins if she gets a total of 7. It A starts the game, find the probability of winning the game by A in third throw of the pair of dice.
By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is ______.
A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`, respectively. If the probability of their making a common error is, `1/20` and they obtain the same answer, then the probability of their answer to be correct is ______.
A box has 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Two cards are drawn at random from a pack of 52 cards one-by-one without replacement. What is the probability of getting first card red and second card Jack?
In year 2019, the probability of getting 53 Sundays is
The probability of getting qualified in JEE-Mains and JEE-Advanced by a student are `1/5` and `3/5` respectively. The probability that the students gets qualified for one of these tests is
A box contains 10 balls, of which 3 are red, 2 are yellow, and 5 are blue. Five balls are randomly selected with replacement. Calculate the probability that fewer than 2 of the selected balls are red?
Two cards are drawn together from a pack of 52 cards. The probability that one is a spade and one is a heart, is?
An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red is: