मराठी

A Chord of a Circle of Radius 30 Cm Makes an Angle of 60° at the Centre of the Circle. Find the Area of the Minor and Major Segments. - Mathematics

Advertisements
Advertisements

प्रश्न

A chord of a circle of radius 30 cm makes an angle of 60° at the centre of the circle. Find the area of the minor and major segments.

बेरीज

उत्तर

Let AB be the chord of a circle with centre O and radius 30 cm such that ∠AOB = 60°
Area of the sector OACBO `= (pi"r"^2theta)/360`

`=(3.14xx30xx30xx60/360)"cm"^2`

= 471 cm

Area of ΔOAB`=1/2"r"^2"sin"   theta`

 `=(1/2xx30xx30xx"sin "60°)"cm"^2`

= (225 × 1.732) cm

= 389.7 cm2

Area of the minor segment = (Area of the sector OACBO) - (Area of ΔOAB)

= (471 - 389.7) cm

= 81.3 cm2

Area of the major segment =(Area of the circle) - (Area of minor sregment)

`=|(3.14xx30xx30) - 81.3| "cm"^2` 

= 2744.7 cm2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Area of Circle, Sector and Segment - Formative Assessment [पृष्ठ ८५३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 18 Area of Circle, Sector and Segment
Formative Assessment | Q 18 | पृष्ठ ८५३

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×