Advertisements
Advertisements
प्रश्न
A dice is rolled 600 times and the occurrence of the outcomes 1, 2, 3, 4, 5 and 6 are given below:
Outcome | 1 | 2 | 3 | 4 | 5 | 6 |
Frequency | 200 | 30 | 120 | 100 | 50 | 100 |
The probability of getting a prime number is
पर्याय
`1/3`
`2/3`
`49/60`
`39/125`
उत्तर
The total number of trials is 600.
Let A be the event of getting a prime number (2, 3 and5).
The number of times A happens is 30+120+50 = 200 .
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
` P (A) = m/n`
Therefore, we have
` P (A) = 200/600`
`= 1/3`
APPEARS IN
संबंधित प्रश्न
An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:-
Monthly income (in Rs.) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 | 10 | 160 | 25 | 0 |
7000 – 10000 | 0 | 305 | 27 | 2 |
10000 – 13000 | 1 | 535 | 29 | 1 |
13000 – 16000 | 2 | 469 | 59 | 25 |
16000 or more | 1 | 579 | 82 | 88 |
Suppose a family is chosen, find the probability that the family chosen is
(i) earning Rs 10000 − 13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000 − 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.
To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.
Opinion | Number of students |
like | 135 |
dislike | 65 |
Find the probability that a student chosen at random
(i) likes statistics, (ii) does not like it
Concentration of SO2 (in ppm) | Number of days (Frequency) |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
Total | 30 |
The above frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 − 0.16 on any of these days.
To know the opinion of the students about Mathematics, a survey of 200 students was conducted. The data is recorded in the following table:
Opinion: | Like | Dislike |
Number of students: | 135 | 65 |
Find the probability that a student chosen at random (i) likes Mathematics (ii) does not like it.
Define a trial.
Define an elementary event.
Mark the correct alternative in each of the following:
The probability of an impossible event is
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability of a household not having any television.
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has
- no defective bulb?
- defective bulbs from 2 to 6?
- defective bulbs less than 4?
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has defective bulbs from 2 to 6?