Advertisements
Advertisements
Question
A dice is rolled 600 times and the occurrence of the outcomes 1, 2, 3, 4, 5 and 6 are given below:
Outcome | 1 | 2 | 3 | 4 | 5 | 6 |
Frequency | 200 | 30 | 120 | 100 | 50 | 100 |
The probability of getting a prime number is
Options
`1/3`
`2/3`
`49/60`
`39/125`
Solution
The total number of trials is 600.
Let A be the event of getting a prime number (2, 3 and5).
The number of times A happens is 30+120+50 = 200 .
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
` P (A) = m/n`
Therefore, we have
` P (A) = 200/600`
`= 1/3`
APPEARS IN
RELATED QUESTIONS
In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
1500 families with 2 children were selected randomly, and the following data were recorded:-
Number of girls in a family | 2 | 1 | 0 |
Number of families | 475 | 814 | 211 |
Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.
An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:-
Monthly income (in Rs.) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 | 10 | 160 | 25 | 0 |
7000 – 10000 | 0 | 305 | 27 | 2 |
10000 – 13000 | 1 | 535 | 29 | 1 |
13000 – 16000 | 2 | 469 | 59 | 25 |
16000 or more | 1 | 579 | 82 | 88 |
Suppose a family is chosen, find the probability that the family chosen is
(i) earning Rs 10000 − 13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000 − 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.
A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0 − 20, 20 − 30… 60 − 70, 70 − 100. Then she formed the following table:-
Marks | Number of students |
0 - 20 | 7 |
20 - 30 | 10 |
30 - 40 | 10 |
40 - 50 | 20 |
50 - 60 | 20 |
60 - 70 | 15 |
70 - above | 8 |
Total 90 |
(i) Find the probability that a student obtained less than 20 % in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.
Eleven bags of wheat flour, each marked 5 Kg, actually contained the following weights of flour (in kg):
4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Define a trial.
Define probability of an event.
Which of the following cannot be the probability of an event?
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability of a household earning Rs 25000 and more per year and owning 2 televisions.
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has
- no defective bulb?
- defective bulbs from 2 to 6?
- defective bulbs less than 4?